Веб-безпека: Як загартувати свої файли cookie HTTP

Примітка: це частина 4 серії про веб-безпеку. Частина 3 була захистити вашу веб-програму за допомогою цих заголовків HTTP.

Уявіть собі, що ви розробник серверних систем, якому потрібно реалізувати сеанси в додатку: перше, що вам спадає на думку, - це видати клієнтам маркер і попросити їх надіслати цей маркер із наступними запитами. Відтепер ви зможете ідентифікувати клієнтів на основі маркера, включеного в їх запит.

Кукі-файли HTTP були створені для стандартизації такого роду механізмів між браузерами. Вони є не що інше, як спосіб зберігати дані, надіслані сервером, і надсилати їх разом із майбутніми запитами. Сервер надсилає файл cookie, який містить невеликі біти даних. Браузер зберігає його та відправляє разом із майбутніми запитами на той самий сервер.

Чому б нам турбуватися про файли cookie з точки зору безпеки? Оскільки дані, які вони містять, найчастіше надзвичайно чутливі. Файли cookie зазвичай використовуються для зберігання ідентифікаторів сеансів або доступу до маркерів, святого Граала зловмисника. Після того, як їх викрито або скомпрометовано, зловмисники можуть видавати себе за користувачів або посилювати їхні привілеї щодо вашої програми.

Захист файлів cookie є одним з найважливіших аспектів при впровадженні сеансів в Інтернеті. Отже, ця глава дасть вам краще розуміння файлів cookie, як їх захистити та які альтернативи можна використовувати.

Що за печивом?

Сервер може встановити файл cookie за допомогою Set-Cookieзаголовка:

HTTP/1.1 200 OkSet-Cookie: access_token=1234...

Потім клієнт зберігає ці дані та надсилає їх у наступних запитах через Cookieзаголовок:

GET / HTTP/1.1Host: example.comCookie: access_token=1234...

Зверніть увагу, що сервери можуть встановлювати кілька файлів cookie одночасно:

HTTP/1.1 200 OkSet-Cookie: access_token=1234Set-Cookie: user_id=10...

і клієнти можуть зберігати кілька файлів cookie та надсилати їх у своєму запиті:

GET / HTTP/1.1Host: example.comCookie: access_token=1234; user_id=10...

На додаток до звичайного ключа та значення , файли cookie можуть містити додаткові вказівки, які обмежують час життя та обсяг.

Термін дії закінчується

Вказує, коли термін дії файлу cookie повинен закінчитися, щоб браузери не зберігали та не передавали його необмежений час. Яскравим прикладом є ідентифікатор сеансу, який зазвичай закінчується через деякий час. Ця директива виражається як дата у формі Date: , <години> ;:: GMT, наприклад Дата: пт, 24 серпня 2018 04:33:00 за Грінвичем. Ось повний приклад файлу cookie, термін дії якого закінчується 1 січня 2018 року:

access_token=1234;Expires=Mon, 1st Jan 2018 00:00:00 GMT

Макс-Вік

Подібно до Expiresдирективи, Max-Ageвизначає кількість секунд до закінчення терміну дії файлу cookie. Файл cookie, який повинен тривати 1 годину, матиме такий вигляд:

access_token=1234;Max-Age=3600

Домен

Ця директива визначає, на яких хостів слід надсилати файли cookie. Пам’ятайте, файли cookie зазвичай містять конфіденційні дані, тому браузерам важливо не передавати їх ненадійним хостам. Файл cookie з директивою Domain=trusted.example.comне надсилатиметься разом із запитами до будь-якого іншого домену, крім trusted.example.comнавіть кореневого домену example.com. Ось дійсний приклад файлу cookie, обмеженого певним субдоменом:

access_token=1234;Domain=trusted.example.com

Шлях

Схожий на Domainдирективу, але застосовується до URL-шляху ( /some/path). Ця директива забороняє спільний доступ до файлів cookie з ненадійними шляхами, як у наступному прикладі:

access_token=1234;Path=/trusted/path

Сеанс і постійні файли cookie

Коли сервер надсилає файл cookie, не встановивши його Expiresабо Max-Age, браузери розглядають його як файл сеансу cookie : замість того, щоб вгадувати час свого життя або застосовувати забавні евристики, браузер видаляє його, коли він вимикається.

Стійкі печиво , навпаки, не зберігаються на клієнті до встановленого терміну на його Expiresабо Max-Ageдирективам.

Варто зазначити, що браузери можуть використовувати механізм, відомий як відновлення сеансу , коли сеансові файли cookie можна відновити після вимкнення клієнта. Браузери застосували такий механізм, щоб зручно дозволити користувачам відновити сеанс після, наприклад, аварії. Відновлення сеансу може призвести до несподіваних проблем, якщо ми очікуємо, що термін дії файлів cookie сеансу закінчиться протягом певного періоду (наприклад, ми абсолютно впевнені, що сеанс триватиме не більше X часу).

З точки зору браузера, відновлення сеансу є цілком допустимою функцією, оскільки ці файли cookie залишаються в руках клієнта без терміну дії. Те, що клієнт робить із цими файлами cookie, не впливає на сервер, який не може визначити, чи клієнт вимикався в будь-який момент часу. Якщо клієнт хоче зберегти файли cookie сеансу назавжди, це не турбує сервер. Це, безумовно, було б сумнівним впровадженням, але сервер з цим не може нічого зробити.

Я не думаю, що є чіткий переможець між сеансом та постійними файлами cookie, оскільки обидва вони служать різним цілям дуже добре. Проте я помітив, що Facebook, Google та подібні служби використовуватимуть постійні файли cookie. З власного досвіду я, як правило, завжди використовував постійні файли cookie, але мені ніколи не доводилося прив’язувати до сеансу важливу інформацію, таку як номер соціального страхування або баланс банківського рахунку.

У деяких контекстах вам може знадобитися використовувати файли cookie сеансу через вимоги відповідності. Я бачив, як аудитори просили перетворити всі постійні файли cookie на сесійні. Коли мене запитують: «чи слід використовувати X чи Y? "Моя відповідь" це залежить від контексту ". Створення гостьової книги для вашого блогу має різні наслідки для безпеки, ніж створення банківської системи. Як ми побачимо далі в цій серії, я б порадив зрозуміти ваш контекст і спробувати створити достатньо безпечну систему : абсолютна безпека - це утопія, як і 100% SLA.

Лише для господаря

Якщо сервер не включає Domainдирективу, файл cookie слід вважати таким host-only, що означає, що термін його дії обмежений лише поточним доменом.

This is a sort of “default” behavior from browsers when they receive a cookie that does not have a Domain set. You can find a small example I wrote at github.com/odino/wasec/tree/master/cookies. It’s a simple web app that sets cookies based on URL parameters, and prints cookies on the page, through some JavaScript code:

 let content = "none";
if (document.cookie) { let cookies = document.cookie.split(';') content = ''
cookies.forEach(c => { content += "

" + c + "

" }) }
document.getElementById('output').innerHTML = "Cookies on this document: " + content + " " 

If you follow the instructions in the README you will be able to access a webserver at wasec.local:7888, which illustrates how host-only cookies work:

If we then try to visit a subdomain, the cookies we set on the main domain are not going to be visible — try navigating to sub.wasec.local:7888:

A way to circumvent this limitation is, as we’ve seen earlier, to specify the Domain directive of the cookie, something that we can do by visiting wasec.local:7888/?domain=on:

If we have a look at the application running on the subdomain, we will now be able to see cookies set on the parent domain, as they use Domain=wasec.local, which allows any domain “under” wasec.local to access the cookies:

In HTTP terms, this is how the responses sent from the server look like:

~ ᐅ curl -I //wasec.local:7888HTTP/1.1 200 OKSet-Cookie: example=test_cookieDate: Fri, 24 Aug 2018 09:34:08 GMTConnection: keep-alive
~ ᐅ curl -I "//wasec.local:7888/?domain=on"HTTP/1.1 200 OKSet-Cookie: example=test_cookieSet-Cookie: example_with_domain=test_domain_cookie;Domain=wasec.localDate: Fri, 24 Aug 2018 09:34:11 GMTConnection: keep-alive

Supercookies

What if we were able to set a cookie on a top-level domain (TLD) such as .com or .org? That would definitely be a huge security concern, for two main reasons:

  • user privacy: every website running on that specific TLD would be able to track information about the user in a shared storage
  • information leakage: a server could mistakenly store a sensitive piece of data in a cookie available to other sites

Luckily, TLD-cookies, otherwise known as supercookies, are disabled by web browsers for the reasons I mentioned above. If you try to set a supercookie, the browser will simply refuse to do so. If we append the parameter super=on in our example, we will see the server trying to set a supercookie, while the browser ignores it:

In today’s web, though, there are other ways to keep track of users, ETag tracking being an example of this. Since cookies are usually associated with tracking, these techniques are often referred to as supercookies as well, even though they do not rely on HTTP cookies. Other terms that may refer to the same set of technologies and practices are permacookies (permanent cookies) or zombiecookies (cookies that never die).

Unwanted Verizon AdsCompanies love to make money out of ads, that’s no news. But when ISPs start to aggressively track their customers in order to serve unwanted ads, well, that’s a different story.In 2016, Verizon was found guilty of tracking users without their consent, and sharing their information with advertisers. This resulted in a fine of $1.35 million and the inability, for the company, to continue with their questionable tracking policy.Another interesting example was Comcast, who used to include custom JavaScript code in web pages served through its network.Needless to say, if all web traffic would be served through HTTPS we wouldn’t have this problem, as ISPs wouldn’t be able to decrypt and manipulate traffic on-the-fly.

Cookie flags that matter

Until now we’ve barely scratched the surface of HTTP cookies. It’s now time for us to taste the real juice.

There are 3 very important directives (Secure, HttpOnly, and SameSite) that should be understood before using cookies, as they heavily impact how cookies are stored and secured.

Encrypt it or forget it

Cookies contain very sensitive information. If attackers get hold of a session ID, they can impersonate users by hijacking their sessions.

Most session hijacking attacks usually happen through a man-in-the-middle who can listen to the unencrypted traffic between the client and server, and steal any information that’s been exchanged. If a cookie is exchanged via HTTP, then it’s vulnerable to MITM attacks and session hijacking.

To overcome the issue, we can use HTTPS when issuing the cookie and add the Secure flag to it. This instructs browsers to never send the cookie in plain HTTP requests.

Going back to our practical example, we can test this out by navigating to //wasec.local:7889/?secure=on. The server sets 2 additional cookies, one with the Secure flag and one without:

When we go back and navigate to the HTTP version of the site, we can clearly see that the Secure cookie is not available in the page. Try navigating to wasec.local:7888.

We can clearly see that the HTTPS version of our app set a cookie that’s available to the HTTP one (the not_secure one), but the other cookie, flagged as Secure, is nowhere to be seen.

Marking sensitive cookies as Secure is an incredibly important aspect of cookie security. Even if you serve all of your traffic over HTTPS, attackers can find a way to set up a plain old HTTP page under your domain and redirect users there. Unless your cookies are Secure, they will then have access to a very delicious meal.

JavaScript can’t touch this

As we’ve seen earlier in this series, XSS attacks allow a malicious user to execute arbitrary JavaScript on a page. Considering that you could read the contents of the cookie jar with a simple document.cookie, protecting our cookies from untrusted JavaScript access is a very important aspect of hardening cookies from a security standpoint.

Luckily, the HTTP spec took care of this with the HttpOnly flag. By using this directive we can instruct the browser not to share the cookie with JavaScript. The browser then removes the cookie from the window.cookie variable, making it impossible to access the cookie via JavaScript.

If we look at the example at wasec.local:7888/?httponly=on, we can clearly see how this works. The browser has stored the cookie (as seen in the DevTools screenshot below) but won’t share it with JavaScript:

The browser will then keep sending the cookie to the server in subsequent requests, so the server can still keep track of the client through the cookie. The trick, in this case, is that the cookie is never exposed to the end-user, and remains “private” between the browser and the server.

The HttpOnly flag helps mitigate XSS attacks by denying access to critical information stored in a cookie. Using it makes it harder for an attacker to hijack a session.

In 2003, researchers found an interesting vulnerability around the HttpOnly flag, Cross-Site Tracing (XST).In a nutshell, browsers wouldn’t prevent access to HttpOnly cookies when using the TRACE request method. While most browsers have now disabled this method, my recommendation would be to disable TRACE at your webserver’s level, returning the 405 Not allowed status code.

SameSite: The CSRF killer

Last but not least, the SameSite flag, one of the latest entries in the cookie world.

Introduced by Google Chrome v51, this flag effectively eliminates Cross-Site Request Forgery (CSRF) from the web. SameSite is a simple yet groundbreaking innovation as previous solutions to CSRF attacks were either incomplete or too much of a burden to site owners.

In order to understand SameSite, we first need to have a look at the vulnerability it neutralizes. A CSRF is an unwanted request made by site A to site B while the user is authenticated on site B.

Sounds complicated? Let me rephrase.

Suppose that you are logged in on your banking website, which has a mechanism to transfer money based on an HTML rm> and a few additional parameters (destination account and amount). When the website receives a POST request with those parameters and your session cookie, it will process the transfer. Now, suppose a malicious 3rd party website sets up an HTML form as such:

See where this is getting?

If you click on the submit button, cleverly disguised as an attractive prize, $1000 is going to be transferred from your account. This is a cross-site request forgery - nothing more, nothing less.

Traditionally, there have been 2 ways to get rid of CSRF:

  • Origin and Referer headers: the server could verify that these headers come from trusted sources (For example //bank.com). The downside of this approach is that, as we’ve seen earlier in this series, neither the Origin nor the Referer are very reliable and could be “turned off” by the client in order to protect the user’s privacy.
  • CSRF tokens: the server could include a signed token in the form, and verify its validity once the form is submitted. This is generally a solid approach and it’s been the recommended best practice for years. The drawback of CSRF tokens is that they’re a technical burden for the backend, as you’d have to integrate token generation and validation in your web application. This might not seem to be a complicated task, but a simpler solution would be more than welcome.

SameSite cookies aim to supersede the solutions mentioned above once and for all. When you tag a cookie with this flag, you tell the browser not to include the cookie in requests that were generated by different origins. When the browser initiates a request to your server and a cookie is tagged as SameSite, the browser will first check whether the origin of the request is the same origin that issued the cookie. If it’s not, the browser will not include the cookie in the request.

We can have a practical look at SameSite with the example at github.com/odino/wasec/tree/master/cookies. When you browse to wasec.local:7888/?samesite=on the server will set a SameSite cookie and a “regular” one.

Original text


If we then visit wasec2.local:7888/same-site-form we will see an example HTML form that will trigger a cross-site request:

If we click on the submit button of the form, we will then be able to understand the true power of this flag. The form will redirect us to wasec.local:7888, but there is no trace of the SameSite cookie in the request made by the browser:

Don’t get confused by seeing same_site_cookie=test on your screen: the cookie is made available by the browser, but it wasn’t sent in the request itself. We can verify this by simply typing //wasec.local:7888/ in the address bar:

Since the originator of the request is “safe” (no origin, GET method) the browser sends the SameSite cookie with the request.

This ingenious flag has 2 variants, Lax and Strict. Our example uses the former, as it allows top-level navigation to a website to include the cookie. When you tag a cookies as SameSite=Strict instead, the browser will not send the cookie across any cross-origin request, including top-level navigation. This means that if you click a link to a website that uses strict cookies you won’t be logged in at all. An extremely high amount of protection that, on the other hand, might surprise users. The Lax mode allows these cookies to be sent across requests using safe methods (such as GET), creating a very useful mix between security and user experience.

Let’s recap what we’ve learned about cookies flags as they are crucial when you’re storing, or allowing access to, sensitive data through them, which is a very standard practice:- marking cookies as Secure will make sure that they won’t be sent across unencrypted requests, rendering man-in-the-middle attacks fairly useless- with the HttpOnly flag we tell the browser not to share the cookie with the client (for example, allowing JavaScript access to the cookie), limiting the blast radius of an XSS attack- tagging the cookie as SameSite=Lax|Strict will prevent the browser from sending it in cross-origin requests, rendering any kind of CSRF attack ineffective

Alternatives

Reading all of this material about cookies and security, you might be tempted to say “I really want to stay away from cookies!”. The reality is that, as of now, cookies are your best bet if you want to implement some sort of session mechanism over HTTP. Every now and then I’m asked to evaluate alternatives to cookies, so I’m going to try and summarize a couple things that get mentioned very often:

  • localStorage: especially in the context of single-page applications (SPA), localStorage gets sometimes mentioned when discussing where to store sensitive tokens. The problem with this approach, though, is that localStorage does not offer any kind of protection against XSS attacks. If an attacker is able to execute a simple localStorage.getItem('token') on a victim’s browser, it’s game over. HttpOnly cookies easily overcome this issue.
  • JWT: JSON Web Tokens define a way to securely create access tokens for a client. JWT is a specification that defines how an access token would look like and does not define where is the token going to be stored. In other words, you could store a JWT in a cookie, the localStorage or even in memory, so it doesn’t make sense to consider JWTs an “alternative” to cookies.

What would LeBron do?

It’s time to move on from the HTTP protocol and its features, such as cookies. Throughout this series we’ve been on a long journey, dissecting why cookies were born, how they’re structured and how you can protect them by applying some restrictions on their Domain, Expires, Max-Age and Path attributes, and how other flags such as Secure, HttpOnly and SameSite are vital in hardening cookies.

Let’s move forward and try to understand what we should do, from a security perspective, when we encounter a particular situation. The next article will try to provide advice based on best practices and past experience.

The next article in this series will introduce what I call “The Situationals”.

Originally published at odino.org (14 September 2018).

You can follow me on Twitter — rants are welcome! ?